Publications

Où [PDF] apparaît, vous pouvez lire les documents en utilisant Adobe Acrobat Reader.

2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1990 | 1989 | 1988 | 1982

2017

  • D’Amore, B., & Radford L. (2017). Enseñanza y aprendizaje de las matemáticas: problemas semióticos, epistemológicos y prácticos. Bogotá, Colombia: Universidad Distrital Francisco José de Caldas. (192 p.). [PDF]
  • Radford L., & Roth W. (2017). Alienation in mathematics education: a problem considered from neo-Vygotskian approaches. Educational Studies in Mathematics, DOI 10.1007/s10649-017-9769-0. [PDF]
  • Radford L. (2017). La consapevolezza dell’importanza del contesto sociale, culturale e politico del pensiero, dell’insegnamento e dell’apprendimento: alcuni elementi del mio percorso. La matematica e la sua didattica, Anno 25, n. 1, 65-74. [PDF] [PDF anglais]

Haut de la page ↑

2016

  • Radford, L. (2016). Mathematics Education as a Matter of Labor. In M.A. Peters (ed.). Encyclopedia of Educational Philosophy and Theory. Section: Mathematics education philosophy and theory. P. Valero and G. Knijnik, Editors. Singapore: Springer. DOI 10.1007/978-981-287-532-7_518-1 [PDF]
  • Radford, L. (2016). Mathematics and Mathematics classroom activity through the lens of a metaphor. In M. Iori (Ed.), La Matematica e la sua Didattica/ Mathematics and Mathematics Education. In occasion of the 70 years of Bruno D’Amore (pp. 439-446). Bologna: Pitagora Editrice. [PDF]
  • Radford, L. (2016). The theory of objectification and its place among sociocultural research in mathematics education. International Journal for Research in Mathematics Education (RIPEM), 6(2), 187-206. [PDF]
  • Radford, L. (2016). The epistemic, the cognitive, the human: a commentary on the mathematical working space approach. ZDM Mathematics Education, 48, 925-933. [PDF]
  • Radford, L., Furinghetti, F., & Hausberger, T. (Eds.) (2016). Proceedings of the 2016 ICME Satellite Meeting of the International Study Group on the Relations Between the History and Pedagogy of Mathematics. Montpellier, France: IREM de Montpellier. [PDF]
  • Radford, L. (2016). Father Padilla’s Arithmetica Practica (1732) in its cultural colonial Guatemalan context. In Radford, L., Furinghetti, F., & Hausberger, T. (Eds.),
    Proceedings of the 2016 ICME Satellite Meeting of the International Study Group on the Relations Between the History and Pedagogy of Mathematics (pp. 557-568). Montpellier, France: IREM de Montpellier. [PDF]
  • Moretti, V., & Radford, L. (2016). Towards a culturally meaningful history of concepts and the organization of mathematics teaching activity. In Radford, L., Furinghetti, F., & Hausberger, T. (Eds.), Proceedings of the 2016 ICME Satellite Meeting of the International Study Group on the Relations Between the History and Pedagogy of Mathematics
    (pp. 503-512). Montpellier, France: IREM de Montpellier. [PDF]
  • Radford, L. (2016). The ethic of semiosis and the classroom constitution of mathematical subjects. 13th International Congress on Mathematical Education. Topic Study Group 54: Semiotics in Mathematics Education. Hamburg, Germany, 24-31 July 2016. [PDF]
  • Radford, L., & Barwell, R. (2016). Language in mathematics education research. In A. Gutiérrez, G. Leder, & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education. The journey continues (pp. 275-313). Rotterdam: Sense. [PDF]
  • Radford, L. (2016). On alienation in the mathematics classroom. International Journal of Educational Research, 79, 258-266. [PDF]
  • Presmeg, N., Radford, L., Roth, W., & Kadunz, G. (2016). Semiotics in mathematics education. Switzerland: Springer. [PDF]
  • Radford, L. (2016). Epistemology as a research category in mathematics teaching and learnig. In B. Hodgson, A. Kuzniak, & J. Lagrange (Eds.), The didactics of mathematics: Approaches and issues (pp. 31-41). Switzerland: Springer. [PDF]

Haut de la page ↑

2015

  • Padilla, J. J. (1732). Arithmetica Practica (L. Radford, ed.). Ciudad de Santiago de Guatemala: Imprenta de Ignacio Jacobo de Beteta. [PDF] [iBooks]
  • Radford L. (2015). La pensée mathématique du point de vue de la théorie de l’objectivation. In Theis L. (Ed.) Pluralités culturelles et universalité des mathématiques : enjeux et perspectives pour leur enseignement et leur apprentissage – Actes du colloque EMF2015 – GT3, pp. 334-345. Alger: 10-14 octobre 2015. [PDF]
  • Moretti, V., & Radford, L. (2015). História do conceito culturalmente significada e a organização da actividade de ensino de matemática . In Anais do VI seminário internacional de pesquisa em educação matemática. Pirenópolis – Goiás, Brasil. [PDF]
  • Jansen, T. and Radford, L. (2015). Solving equations: Gestures, (un)allowable hints, and the unsayable matter. In K. Krainer, N. Vvondrová (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 419-425). Prague: Charles University. [PDF]
  • Radford, L. (2015). Methodological Aspects of the Theory of Objectification. Perspectivas da Educação Matemática, v. 8(18), 547-567. [PDF]
  • Radford, L. (2015). The Epistemological Foundations of the Theory of Objectification. Isonomia, 127-149. [PDF]
  • Radford, L. (2015). Rhythm as an Integral Part of Mathematical Thinking. In M. Bockarova, M. Danesi, D. Martinovic and R. Núñez (Eds.), Mind in Mathematics: Essays on Mathematical Cognition and Mathematical Method (pp. 68-85). München, Germany: LINCOM GmbH. [PDF]
  • Radford, L. (2015). Of love, frustration, and mathematics: A Cultural-historical approach to emotions in mathematics teaching and learning. In B. Pepin & B. Rösken-Winter (Eds.), From beliefs and affect to dynamic systems: (exploring) a mosaic of relationships and interactions (pp. 25-49). NY: Springer. Advances in Mathematics Education series. [PDF]
  • Radford, L. (2015). Introduction: The phenomenological, epistemological, and semiotic components of generalization. PNA, 9(3), 129-141. [PDF]
  • Moretti, V., Panossian, M. L., & de Moura, M. O. (2015). Educação, educação matemática e teoria cultural da objetivação: uma conversa com Luis Radford. Educ. Pesqui., 41(1), 243-260. [PDF]
  • Radford, L. & Sabena, C. (2015). The Question of Method in a Vygotskian Semiotic Approach. In Bikner-Ahsbahs, A., Knipping, C., & Presmeg, N. (Eds.), Approaches to Qualitative Research in Mathematics Education (pp. 157-182). New York: Springer. [PDF]

Haut de la page ↑

2014

  • Interview with Luis Radford on the Theory of Objectification. Professor Manoel Oriosvaldo de Moura, Faculdade de Educaçao, Universidade de São Paulo. March 2014. [Video]
  • de Moura, M. O. & Moretti, V. (2014). Entevista con Luis Radford sobre la teoría de la objetivación. Santillana. Revista Ruta Maestra, 9, 33-37. [PDF]
  • Radford, L. (2014). Cultura e historia: dos conceptops dificiles y controversiales en aproximaciones contemporaneas en la educación matemática [Culture and history: Two difficult and controversial concepts in current approaches to mathematics education]. In I. Abreu Mendes & C. Farias da Silva (Eds.), Cultura, Práticas Sociais e Educação Matemática (pp. 49-68). São Paulo: Livraria da Física. [PDF]
  • Radford, L. (2014). Conversatorio alrededor de la teoría de la objetivación [Conversation about the theory of objectification]. Universidad de Antioquia. Medellín, Colombia. November 20 2014. [Video]
  • Radford, L. (2014). La enseñanza-aprendizaje desde una perspectiva histórico-cultural: la teoría de la objetivación. Ciclo de conferencias en Educación Matemática – GEMAD. Bogotá, Colombia. October 18 2014. [Video]
  • Radford, L. (2014). De la teoría de la objetivación. Revista Latinoamericana de Etnomatemática, 7(2), 132-150. [PDF]
  • Radford, L. (2014). Theories and Their Networking: A Heideggerian Commentary. In A. Bikner-Ahsbahs and S. Prediger (eds.), Networking of Theories as a Research Practice in Mathematics Education. Advances in Mathematics Education. New York: Springer. [PDF]
  • Radford, L. (2014). On teachers and students: An ethical cultural-historical perspective. In Liljedahl, P., Nicol, C., Oesterle, S., & Allan, D. (Eds.) Proceedings of the Joint Meeting of PME 38 and PME-NA 36 (Plenary Conference), Vol. 1, pp. 1-20. Vancouver, Canada: PME. [PDF]
  • Radford, L. (2014). Towards an embodied, cultural, and material conception of mathematics cognition. ZDM – The international journal on Mathematics Education, 349–361. [PDF]
  • Radford, L. et al. (2014). History of mathematics and mathematics education. In Michael N. Fried & Tommy Dreyfus (Eds.), Mathematics & Mathematics Education: Searching for Common Ground. New York: Springer, Advances in Mathematics Education series. [PDF]
  • Radford, L. (2014). The progressive development of early embodied algebraic thinking. Mathematics Education Research Journal, 26, 257-277. [PDF]
  • Radford, L. (2014). On the role of representations and artefacts in knowing and learning. Educational Studies in Mathematics, 85, 405-422. [PDF]

Haut de la page ↑

2013

  • Radford, L. (2013). Sumisión, alienación y (un poco de) esperanza: hacia una visión cultural, histórica, ética y política de la enseñanza de las matemáticas. In A. Ramirez y Y. Morales (Eds). Memorias del I Congreso de Educación Matemática de América Central y El Caribe. Santo Domingo, República Dominicana, November 6-8, 2013. Plenary Lecture. [PDF]
  • Radford, L. (2013). En torno a tres problemas de la generalización [Concerning three problems of generalization] Rico, L, Cañadas, M. C., Gutiérrez, J., Molina, M. & Segovia, I. (Eds ), Investigación en Didáctica de las Matemáticas. Homenaje a Encamación Castro. Granada, España: Editorial Comares. [PDF]
  • Miranda, I . , Radford, L. , & Guzmán, J. (2013). Un Origen Matemático vs Dos Orígenes Fenomenológicos: la Significación del Movimiento de Objetos Respecto del Punto (0,0). Journal of Research in Mathematics Education, 2 (2), 1 83-208. [PDF]
  • Radford, L. (2013). Three key Concepts of the theory of objectification: Knowledge, knowing, and learning. Journal of Research in Mathematics Education, 2 (1), 7-44. [PDF]
  • Radford, L. (2013). On semiotics and education. Éducation et Didactique, 7(1), 185-204. [PDF]
  • Radford, L. (2013). Perceiving with the eyes and with the hands. REPIME, 3(1), 56-77. [PDF]
  • Radford, L. (2013). Preface. In B. D’Amore, Martha Fandiño Pinillo & M. Lori, Primi elementi di semiotica (vii-ix.). Bologna: Pytagora editrice. [PDF]
  • Radford, L. (2013). Sensuous cognition. In D. Martinovic, V. Freiman, & Z. Karadag (Eds.), Visual mathematics and cyberlearning (pp. 141-162). New York: Springer. [PDF]

Haut de la page ↑

2012

  • Radford, L. (2012). Bakhtin, Alterity, and Ideology. Commentary on the Chapter by Richard Barwell, “Heteroglossia in Multilingual Mathematics Classrooms.” In H. Forgasz, & F. Rivera (eds.), Towards Equity in Mathematics Education. Advances in Mathematics Education (pp. 339-342). Berlin: Springer-Verlag. [PDF]
  • Radford, L. (2012). Education and the illusions of emancipation. Educational Studies in Mathematics, 80(1), 101-118. [PDF]
  • Radford, L. (2012). On the development of algebraic thinking. PNA 64(1), 117-133. [PDF]
  • Radford, L. (2012). Early algebraic thinking: Epistemological, semiotic, and developmental issues. ICME-12 Regular Lecture. Seoul, South Korea. July 8-15, 2012. [PDF]
  • Radford, L. (2012). On the cognitive, epistemic, and ontological roles of artifacts. In G. Gueudet, B. Pepin, & L. Trouche, (Eds.), From text to ‘lived’ resources (pp. 283-288). New York: Springer. [PDF]
  • Radford, L. (2012). On the growth and transformation of mathematics education theories. Paper presented at the International Colloquium The Didactics of Mathematics: Approaches and Issues. A Homage to Michèle Artigue. Université de Paris VII. May 31 to June 1, 2012. [PDF]
  • D’Enfert R., Djebbar A., Radford L. (2012) Dimensions historique et culturelle dans l’enseignement des mathématiques – Compte-rendu du Groupe de Travail no. 4, Actes Espace Mathématique Francophone (EMF2012 – GT4). Genève, Février 2012. [PDF]
  • Radford, L. (2012). Towards an embodied, cultural, and material conception of mathematics cognition. ICME-12 Topic Study Group 22 (TSG22): Learning and cognition in mathematics, Seoul, South Korea. July 8-15, 2012. [PDF]
  • Roth, W.-M., Radford, L. & LaCroix, L. (2012). Working With Cultural-Historical Activity Theory. Qualitative Social Research, 13 (2). http://www.qualitative-research.net/index.php/fqs/article/view/1814/3380. [PDF]
  • Kidron, I., Bikner-Ahsbahs, A., Monaghan, J., Radford, L., & Sensevy, G. (2012). CERME7 Working Group 16: Different theoretical perspectives and approaches in research in mathematics education. Research in Mathematics Education, 14(2), 213-214. [PDF]

Haut de la page ↑

2011

  • Radford, L., & Roth, W.-M. (2011). Intercorporeality and ethical commitment: an activity perspective on classroom interaction. Educational Studies in Mathematics, 77, 227-245. [PDF]
  • Radford, L. (2011). Dialogism in absentia or the language of mathematics. In S. Sbaragli & B. D’Amore (Eds.), La matematica e la sua didattica. Quarant’anni di impegno (pp. 184-186). Bologna: Pitagora Editrice. [PDF]
  • Radford, L. (2011). Sullo sviluppo del pensiero matematico nei giovani studenti: la graduale armonizzazione di percezione, gesti e simboli. In B. D’Amore & S. Sbaragli (Eds.), Un quarto di secolo al servizio della didattica della matematica (pp. 33-39). Bologna: Pitagora. [PDF]
  • Radford, L. (2011). La evolución de paradigmas y perspectivas en la investigación. El caso de la didáctica de las matemáticas [The evolution of paradigms and perspectives in research. The case of mathematics education]. In J. Vallès, D. Álvarez & R. Rickenmann (Eds.), L’ctivitat docent intervenció, innovació, investigació [Teacher’s activity: Intervention, innovation, research] (pp. 33-49). Girona (Spain): Documenta Universitaria. [PDF]
  • Radford, L. (2011). Embodiment, perception and symbols in the development of early algebraic thinking. In Ubuz, B. (Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 17-24). Ankara, Turkey: PME. [PDF]
  • Roth, W.-M., & Radford, L. (2011). A cultural historical perspective on teaching and learning. Rotterdam: Sense Publishers. [Book Sample] [Order Book]
  • Radford, L. (2011). Classroom interaction: Why is it good, really? Educational Studies in Mathematics, 76, 101-115. [PDF]
  • Radford, L. (2011). Vers une théorie socioculturelle de l’enseignement-apprentissage: la théorie de l’objectivation. Éléments, 1, 1 – 27. [PDF]

Haut de la page ↑

2010

  • Radford, L. (2010). The anthropological turn in mathematics education and its implication on the meaning of mathematical activity and classroom practice. Acta Didactica Universitatis Comenianae. Mathematics, 10, 103-120. [PDF]
  • Roth, W.-M., & Radford, L. (2010). Re/thinking the Zone of Proximal Development (Symmetrically). Mind, Culture, and Activity, 17(4), 299-307. [PDF]
  • Radford, L. (2010). Elementary Forms of Algebraic Thinking in Young Students. In M. F. Pinto. & T. F. Kawasaki (Eds.). Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4, pp. 73-80. Belo Horizonte, Brazil: PME. [PDF]
  • Radford, L. (2010). The eye as a theoretician: Seeing structures in generalizing activities, For the Learning of Mathematics, 30(2), 2-7. [PDF]
  • Radford, L. (2010). Algebraic thinking from a cultural semiotic perspective. Research in Mathematics Education, 12(1), 1-19. [PDF]
  • Radford, L. (2010). Layers of generality and types of generalization in pattern activities. PNA, 4(2), 37-62. [PDF]
  • Radford, L. (2010). Matemáticas, cultura y algunos pensamientos subversivos. Reseña invitada de Imaginario colectivo y creación matemática de Emmánuel Lizcano. Madrimas, March 10, 2010. [PDF]
  • Radford, L. (2010). Signs, gestures, meanings: Algebraic thinking from a cultural semiotic perspective. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello, F. (Eds.), Proceedings of the Sixth Conference of European Research in Mathematics Education (CERME 6) (pp. XXXIII – LIII). Université Claude Bernard, Lyon, France. [PDF]
  • Bikner-Ahsbahs, A., Dreyfus, T., Kidron, I., Arzarello, F., Radford, L., Artigue, M., & Sabena, C. (2010). Networking of Theories in Mathematics Education. In Pinto, M. F. & Kawasaki, T. F. (Eds.). Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1, pp. 145-175. Belo Horizonte, Brazil: PME. [PDF]

Haut de la page ↑

2009

  • Radford, L. & André, M. (2009). Cerebro, cognición y matemáticas. Relime, 12(2), 215-250. [PDF]
  • Radford, L. (2009). The awareness of the importance of the social, cultural and political context of thinking, teaching and learning: Some elements of my own journey. From a lecture delivered at the occasion of a Ph.D course organized by P. Valero , T. Holmgaard Børsen and X. Du. Aalborg University, Denmark, Nov. 2-5, 2009. [PDF]
  • Radford, L. (2009). Astrazione e generalità matematica: alcune considerazioni semiotiche [Abstraction and mathematical generality: some semiotic remarks]. In B. D’Amore (Ed.), Matematica, stupore e poesia [Mathematics, wonder and poetry] (pp. 146-154). Firenze: Giunti. [PDF] [French version]
  • Radford, L. (2009). L’altérité comme problème éducatif. In J. Boissonneault, R. Corbeil, & A. Hien (eds.), Actes de la 15e Journée Sciences et Savoirs (pp. 11-27). Sudbury: Université Laurentienne. [PDF]
  • Radford, L. (2009). Teorije u matematickom obrazovanju: Jedna kratka studija o njihovim konceptualnim razlikama [Theories in Mathematics Education: A Brief Inquiry into their Conceptual Differences]. ISTRAŽIVANJE MATEMATICKOG OBRAZOVANJA Vol. I (2009), Broj 1, 11-22. [PDF] [English version]
  • Radford, L., Miranda, I., & Demers, S. (2009). Processus d’abstraction en mathématiques. Ottawa: Centre franco-ontarien de ressources pédagogiques, Imprimeur de la Reine pour l’Ontario.
  • Radford, L. (2009). Signifying Relative Motion: Time, Space and the Semiotics of Cartesian Graphs. In W.-M. Roth (Ed.), Mathematical Representations at the Interface of the Body and Culture (pp. 45-69). Charlotte, NC: Information Age Publishers. [PDF]
  • Radford, L. (2009). ‘‘No! He starts walking backwards!’’: interpreting motion graphs and the question of space, place and distance. ZDM – The International Journal on Mathematics Education, DOI 10.1007/s11858-009-0173-9. [PDF]
  • Radford, L., Edwards, L. & Arzarello, F. (2009). Beyond words. Educational Studies in Mathematics, 70(3), 91 – 95. [PDF]
  • Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70(3), 111 – 126. [PDF]

Haut de la page ↑

2008

  • Radford, L. & André, M. (2008). Cerveau, cognition et mathématiques. Rapport 2 de recherche soumis au Ministère de l’éducation de l’Ontario. Le Passage à l’abstrait dans l’apprentissage des mathématiques. Sudbury: Université Laurentienne. [PDF]
  • Radford, L. (2008). Beyond Anecdote and Curiosity. The Relevance of the Historical Dimension in the 21st Century Citizen’s Mathematics Education. In E. Barbin, N. Stehlíková, C. Tzanakis (Eds.), Proceedings of the 5th European Summer University (pp. 163-166). Prague: Vydavatelský servis, Plzeň. [PDF]
  • Assude, T., Boero, P., Herbst, P., Lerman, S., & Radford, L. (2008). The Notions and Roles of Theory in Mathematics Education Research. ICME-11. Monterrey, Mexico. [PDF]
  • Radford, L., Schubring, G., & Seeger, F. (2008). Semiotics in mathematics education: epistemology, history, classroom, and culture. Rotterdam: Sense Publishers. [To order, click here]
  • Radford, L. (2008). The ethics of being and knowing: Towards a cultural theory of learning. In L. Radford, G. Schubring & F. Seeger (Eds.), Semiotics in mathematics education: epistemology, history, classroom, and culture (pp. 215-234). Rotterdam: Sense Publishers. [PDF]
  • Radford, L. (2008). Culture and cognition: Towards an anthropology of mathematical thinking. In L. English (Ed.), Handbook of International Research in Mathematics Education, 2nd Edition (pp. 439 – 464). New York: Routledge, Taylor and Francis. [PDF]
  • Radford, L. (2008). Diagrammatic thinking: Notes on Peirce’s semiotics and epistemology. PNA, 3(1), 1-18. [PDF]
  • Radford, L. (2008). Connecting theories in mathematics education:challenges and possibilities. ZDM – The International Journal on Mathematics Education, 40, 317–327. [PDF]
  • Presmeg, N. & Radford, L. (2008). On semiotics and subjectivity: a response to Tony Brown’s “signifying ‘students’, ‘teachers’, and ‘mathematics’: a reading of a special issue”. Educational Studies in Mathematics, 69 (3), 265-276. [PDF]
  • Radford, L. (2008). Di Sé e degli Altri: Riflessioni su un problema fondamentale dell’educazione [The Self and the Other: Reflections on a Fundamental Problem in Education]. La Matematica e la sua didattica 22(2), 185-205. [PDF] [version française]
  • Furinghetti, F. & Radford, L. (2008). Contrasts and oblique connections between historical conceptual developments and classroom learning in mathematics. In L. English (Ed.), Handbook of International Research in Mathematics Education, 2nd Edition (pp. 626 – 655). New York: Routledge, Taylor and Francis. [PDF]
  • Radford, L., Miranda, I. & Guzmán, J. (2008). Relative motion, graphs and the heteroglossic transformatiion of meanings: A semiotic analysis. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepúlveda (Eds.), Proceedings of the Joint 32nd Conference of the International Group for the Psychology of Mathematics Education and the 30th North American Chapter, vol. 4, pp. 161-168. [PDF]
  • Radford, L. (2008). Semiotic reflections on medieval and contemporary graphic representations of motion. Working paper presented at the History and Pedagogy of Mathematics Conference (HPM 2008), 14-18 July 2008, Mexico City. [PDF]
  • Radford, L. (2008). Theories in Mathematics Education: A Brief Inquiry into their Conceptual Differences. Working Paper. Prepared for the ICMI Survey Team 7. The notion and role of theory in mathematics education research. [PDF]
  • Radford, L. (2008). Iconicity and Contraction: A Semiotic Investigation of Forms of Algebraic Generalizations of Patterns In Different Contexts. ZDM – The International Journal on Mathematics Education. DOI 10.1007/s11858-007-0061-0. [PDF]
  • Radford, L. and Leder G. (2008). Mathematics education: an ICMI perspective, The first century of the International Commission on Mathematical Instruction (1908-2008): Reflecting and shaping the world of mathematics education (ICMI 1908/2008), Istituto della Enciclopedia Italiana fondata da Giovanni Treccani, Roma, 301-311. [PDF]

Haut de la page ↑

2007

  • Miranda, I., Radford, L. y Guzmán, J. (2007). Interpretación de gráficas cartesianas sobre el movimiento desde el punto de vista de la teoría de la objetivación. Educación Matemática, 19(3), 5-30. [PDF]
  • Radford, L., Bardini, C., & Sabena, C. (2007). Perceiving the General. The Multi-Semiotic Dimension of Students’ Algebraic Activity. Journal for Research in Mathematics Education, 28(5), 507-530. [PDF]
  • Radford, L., Furinghetti, F. & Katz, V. (2007). The Topos of Meaning or the Encounter of Past and Present, Educational Studies in Mathematics, 66, 107-110. [PDF]
  • Radford, L., & Puig. L. (2007). Syntax and Meaning as Sensuous, Visual, Historical Forms of Algebraic Thinking. Educational Studies in Mathematics, 66, 145-164. [PDF]
  • Radford, L. (2007). La Arithmetica Practica del Padre Padilla y los inicios de la matemática en Centro América en el período colonial, Revista Brasileira de História da Matemática, 7(14), 193-211. [PDF]
  • Radford, L. (2007). Towards a Cultural Theory of Learning. In Pitta-Pantazi, D. & Philippou, G. (Eds.). Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (CERME – 5). Larnaca, Cyprus, February 22 – 26, 2007. CD-ROM, ISBN – 978-9963-671-25-0, pp. 1782-1797. [PDF]
  • Radford, L. & Empey, H. (2007). Culture, Knowledge and the Self: Mathematics and The Formation of New Social Sensibilities in the Renaissance and Medieval Islam. Revista Brasileira de História da Matemática. Festschrift Ubiratan D’Ambrosio, Especial 1, 231-254. [PDF]
  • Radford, L., D’Amore, B. & Bagni, G. (2007). Obstáulos Epistemológicos y Perspectiva Socio-Cultural de la Matemática. Colección Cuadernos del Seminario en Educación. Universidad Nacional de Colombia, Bogotá, D.C., 10, 5-25. [PDF]

Haut de la page ↑

2006

  • Radford, L. (2006). Semiótica cultural y cognición. In R. Cantoral Uriza, O. Covián Chávez, R. M. Farfán, J. Lezama Andalón, & A. Romo Vázquez (Eds.). Investigaciones sobre Enseñanza y aprendizaje de las matemáticas. Un reporte iberoamericano (pp. 669-689). Mexico: Diaz de Santos. [PDF]
  • Radford, L., Bardini, C., Sabena, C. (2006). Perceptual semiosis and the microgenesis of algebraic generalizations. Fourth Congress of the European Society for Research in Mathematics Education (CERME 4), 17 – 21 February 2005, Sant Feliu de Guíxols, Spain, pp. 684-695. [PDF]
  • Radford, L. (2006). The Cultural-Epistomological Conditions of the Emergence of Algebraic Symbolism. In F. Furringhetti, S. Kaijser & C. Tzanakis, Proceedings of the 2004 History and Pedagogy of Mathematics Conference & ESU4, Uppsala, Sweden, pp. 509-524 (Plenary Lecture). [PDF]
  • Radford, L., & D’Amore, B. (Guest Eds.) (2006). Semiotics, Culture, and Mathematical Thinking. Revista Latinoamericana de Investigación en Matemática Educativa (Special Issue). [PDF]
  • Radford, L. (2006). Elements of a Cultural Theory of Objectification. Revista Latinoamericana de Investigación en Matemática Educativa, Special Issue on Semiotics, Culture and Mathematical Thinking, pp. 103-129. [PDF]
  • Radford, L. (2006). Elementos de una teoría cultural de la objetivación. Revista Latinoamericana de Investigación en Matemática Educativa, Special Issue on Semiotics, Culture and Mathematical Thinking, pp. 103-129. [PDF]
  • Radford, L. (2006). Semiótica y educación matemática. Revista Latinoamericana de Investigación en Matemática Educativa, Special Issue on Semiotics, Culture and Mathematical Thinking, pp. 7-21. [PDF]
  • Radford, L. (2006). Algebraic Thinking and the Generalization of Patterns: A Semiotic Perspective. In S. Alatorre, J. L. Cortina, M. Sáiz, A. Méndez (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, North American Chapter, Mérida: Universidad Pedagógica Nacional, November 9 – 12, Vol. 1, pp. 2-21. [PDF]
  • Radford, L. (2006). Tre tradizioni semiotiche: Saussure, Peirce e Vygotskij [Three Semiotic Traditions: Saussure, Peirce and Vygotsky]. Rassegna, 29, 34-39. [PDF]
  • Radford, L. (2006). The Anthropology of Meaning. Educational Studies in Mathematics, 61(1-2), 39-65. [PDF]
  • Radford, L. (2006). Communication, apprentissage et formation du je communautaire. In B. D’Amore & S. Sbaragli (eds), 20th Italian National Conference Incontri con la Matematica, Bologna, November 3-5, 2006, pp. 65-72. [PDF] [PDF-ITA]
  • D’Amore, B., Radford, L., & Bagni, G. (2006). Ostacoli epistemologici e prospettiva socio-culturale [Epistemological Obstacles and the Sociocultural Perspective]. L’insegnamento della matematica e delle scienze integrate, 29B(1), 12-39. [PDF]
  • Radford, L. (2006). How to look at the general through the particular: Berkeley and Kant on symbolizing mathematical generality. In S. Sbaragli, La matematica e la sua didattica : vent’anni di impegno, Roma, Settembre 23, 2006, 245-248. [PDF]

Haut de la page ↑

2005

  • Radford, L. (2005). The semiotics of the schema. Kant, Piaget, and the Calculator. In M. H. G. Hoffmann, J. Lenhard and F. Seeger (Eds.), Activity and Sign. Grounding Mathematics Education (pp. 137-152). New York: Springer. [PDF]
  • Radford, L. (2005). Body, Tool, and Symbol: Semiotic Reflections on Cognition. In E. Simmt and B. Davis (Eds.), Proceedings of the 2004 Annual Meeting of the Canadian Mathematics Education Study Group, pp. 111-117. [PDF]
  • Radford, L. (2005). Why do gestures matter? Gestures as semiotic means of Objectification. In Helen L. Chick, Jill L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, University of Melbourne, Australia, Vol. 1, pp. 143-145. [PDF]
  • Radford, L., Bardini, C., Sabena, C., Diallo, P., Simbagoye, A. (2005). On embodiment, artifacts, and signs: A semiotic-cultural perspective on mathematical thinking. In Helen L. Chick, Jill L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, University of Melbourne, Australia, Vol. 4, pp. 113-120. [PDF]
  • Bardini, C., Radford, L. & Sabena, C. (2005). Struggling with variables, parameters, and indeterminate objects or how to go insane in mathematics. In Helen L. Chick, Jill L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, University of Melbourne, Australia, Vol. 2, pp. 129-136. [PDF]
  • Sabena, C., Radford, L. and Bardini, C. (2005). Synchronizing gestures, words and actions in pattern generalizations. In H. L. Chick, J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, University of Melbourne, Australia, Vol. 4, pp. 129-136. [PDF]
  • Bardini, C., Sabena, C. and Radford, L. (2005). Corps, symbole et artefact. Trois dimensions del’ objectivation du savoir, Scientia Paedagogica Experimentalis, XLII (2), 255-272. [PDF]

Haut de la page ↑

2004

  • Radford, L. (2004). Cose sensibili, essenze, oggetti matematici ed altre ambiguità [Sensible Things, Essences, Mathematical Objects and other ambiguities], La Matematica e la sua didattica, 2004, no. 1, 4-23. [PDF] [PDF-ENG]
  • Radford, L. (2004). Review of Vita Mathematica. Revista Brasileira de História Matemática, 4(7), 83-95. [PDF]
  • Radford, L. et Demers, S. (2004). Communication et apprentissage. Repères conceptuels et pratiques pour la salle de classe de mathématiques. Ottawa : Centre franco-ontarien des ressources pédagogiques, 206 p.
  • Radford, L. (2004). La généralisation mathématique comme processus sémiotique. In G. Arrigo (ed.), Atti del Convegno di didattica della matematica 2004, Alta Scuola Pedagogica. Locarno: Suisse, pp. 11-27. [PDF] [PDF-ITA]
  • Radford, L., Cerulli, M, Demers, S., and Guzmán, J. (2004). The sensual and the conceptual: Artefact-mediated kinesthetic actions and semiotic activity. In M. J. Høines and A. B. Fuglestad (eds.), Proceedings of the 28 Conference of the international group for the psychology of mathematics education (PME 28), Vol. 4, pp. 73-80. Norway: Bergen University College. [PDF]
  • Radford, L. (2004). Syntax and Meaning. In M. J. Høines and A. B. Fuglestad (eds.), Proceedings of the 28 Conference of the international group for the psychology of mathematics education (PME 28), Vol. 1, pp. 161-166. Norway: Bergen University College. [PDF]
  • Radford, L. (2004). Del símbolo y de su objeto. Reflexiones en torno a la teoría de la conceptualización de Cassirer. Revista Latinoamericana de Matemática Educativa, 7(2), 157-170. [PDF]
  • Radford, L. (2004). From Truth to Efficiency: Comments on Some Aspects of the Development of Mathematics Education, Canadian Journal of Science, Mathematics and Technology Education / Revue canadienne de l’enseignement des sciences, des mathématiques et des technologies, 4(4), 551-556. [PDF]

Haut de la page ↑

2003

  • Radford, L. (2003). On culture and mind. A post-Vygotskian semiotic perspective, with an example from Greek mathematical thought,. In M. Anderson, A. Sáenz-Ludlow, S. Zellweger & V. Cifarelli (Eds.), Educational Perspectives on Mathematics as Semiosis: From Thinking to Interpreting to Knowing (pp. 49-79). Ottawa: Legas Publishing. [PDF]
  • Radford, L. (2003). Gestures, speech, and the sprouting of signs. Mathematical Thinking and Learning, 5(1), 37-70. [PDF]
  • Radford, L., Demers, S., Guzmán, J. and Cerulli, M. (2003). Calculators, graphs, gestures, and the production meaning. In N., Pateman, B. Dougherty and J. Zilliox (eds.), Proceedings of the 27 Conference of the international group for the psychology of mathematics education (PME27 –PMENA25), Vol. 4, pp. 55-62. [PDF]
  • Radford, L. (2003). On the epistemological limits of language. Mathematical knowledge and social practice in the Renaissance. Educational Studies in Mathematics, 52(2), 123-150 [PDF] [PDF-FR]
  • Radford, L. (2003). Narratives, expressions algébriques et calcul formel : de la constitution à la transformation du sens. Annales de Didactique et de Science Cognitives, 8, 191-208. [PDF]

Haut de la page ↑

2002

  • Radford, L. (2002). Algebra as Tekhnē: Artefacts, Symbols and Equations in the Classroom. Mediterranean Journal for Research in Mathematics Education, 1 (1), 31-56. [PDF]
  • Radford, L. (2002). The Object of Representations: Between Wisdom and Certainty. In F. Hitt (ed.), Representations and Mathematics Visualization (219-240). Mexico: Departamento de matemática educativa Cinvestav-IPN. [PDF]
  • Radford, L. (2002). The seen, the spoken and the written. A semiotic approach to the problem of objectification of mathematical knowledge. For the Learning of Mathematics, 22(2), 14-23. [PDF]
  • Furinghetti, F. & Radford, L. (2002). Historical conceptual developments and the teaching of mathematics: from phylogenesis and ontogenesis theory to classroom practice. In: L. English (Ed.), Handbook of International Research in Mathematics Education (631-654). New Jersey: Lawrence Erlbaum. [PDF]
  • Radford, L., Savage, M. et Roberge, L. (2002). Évidence, interprétation et argumentation scientifique: une activité en 9e année au sujet de la chute des corps. Pre-prints École des sciences de l’éducation, Université Laurentienne, Ontario, Canada, No. 4/2002. [PDF]
  • Radford, L. (2002). On heroes and the collapse of narratives: a contribution to the study of symbolic thinking. Proceedings of the 16th Conference of the International Group for the Psychology of Mathematics Education, PME 26, Anne D. Cockburn and Elena Nardi (eds.), Vol. 4, pp. 81-88. [PDF] [PDF-SPA]
  • Charbonneau, L. & Radford, L. (2002). Crafting an algebraic mind: intersection form history and the contemporary mathematics classroom, Proceedings of the 24th annual meeting of the Canadian Mathematics Education Study Group/ Group canadien d’études en didactique des mathématiquesm CMESG/GCEDM, Université du Québec à Montréal, May 26-30, 2000. pp. 47-60. [PDF]
  • Radford, L. (2002). Generalizing geometric-numeric patterns: Metaphors, indexes and other students’ semiotic devices, Mediterranean Journal for Research in Mathematics Education: An International Journal, 1 (2), 63-72. [PDF]

Haut de la page ↑

2001

  • Radford, L. (2001). The historical origins of algebraic thinking. In R. Sutherland, T. Rojano, A. Bell & R. Lins (Eds.), Perspectives on School Algebra (pp. 13-63). Dordrecht: Kluwer. [PDF]
  • Radford, L.(2001). On the relevance of Semiotics in Mathematics Education. Paper presented to the Discussion Group on Semiotics and Mathematics Education at the 25th PME International Conference, The Netherlands, University of Utecht, July 12-17, 2001. [PDF]
  • Radford, L. (2001). Of course they can! A Reaction to Carraher et al.`s paper « Can young students operate on unknowns? ». In: Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education, Marja van den Hueuvel-Panhuizen (ed.), Freudental Institute, Utrecht University, The Netherlands, Vol.1, pp145-148. [PDF]
  • Radford, L. (2001). Factual, Contextual and Symbolic Generalizations in Algebra, in: Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education, Marja van den Hueuvel-Panhuizen (ed.), Freudental Institute, Utrecht University, The Netherlands, Vol.4, pp.81-88. [PDF]

Haut de la page ↑

2000

  • Radford, L., Bussi, M. G. B., Bekken, O., Boero, P., Dorier, J.-L., Katz, V., Rogers, L., Sierpinski, A. & Vasco, C. (2000). Historical formation and student understanding of mathematics. In J. Fauvel and J. van Maanen (eds.), History in mathematics education: the ICMI study. Netherlands: Springer. [PDF]
  • Radford, L. & Guérette, G (2000). Second degree equations in the classroom: A Babylonian approach. In V. Katz (ed.). Using history to teach mathematics. An international perspective (pp. 69-75). Washington: The Mathematical Association of America. [PDF]
  • Radford, L. (2000). Students’ processes of symbolizing in algebra. A semiotic analysis of the production of signs in generalizing tasks. In T. Nakahara and M. Koyama (eds.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education (PME-24), Hiroshima University, Japan, 4, 81-88. [PDF]
  • Radford, L.(2000). Sujeto, objeto, cultura y la formaciòn del conocimiento, Educaciòn Mathemàtica, 12(1), 51-69. [PDF]
  • Radford, L. (2000). Signs and meanings in students’ emergent algebraic thinking: A semiotic analysis, Educational Studies in Mathematics, 42 (3), 237-268. [PDF]

Haut de la page ↑

1999

  • Radford, L. (1999). The Rhetoric of Generalization: A Cultural, Semiotic Approach to Students’ Processes of Symbolizing, Proceedings of the 23rd Conference of the International Group for the Psychology of Mathematics Education, Haifa, Technion-Israel Institute of Technology, Vol.4, 89-96. [PDF]
  • Radford, L. (1999). Sur les modes du savoir, Mémoires de la 3e Université d`été Européenne sur L’Histoire et l’Épistémologie dans l’éducation Mathématique, Université Catholique de Louvain, Louvain-La-Neuve, Belgique Vol.1, 287-296. [PDF]
  • Radford, L. (1999). Rethinking representations, Proceedings of the 21st Conference of the International Group for the Psychology of Mathematics Education, North American Chapter, Universidad Autónomadel Estado de Morelos, México. [PDF]
  • Radford, L. (1999). La razón desnaturalizada. Ensayo de epistemología antropológica, Revista Latinoaméricana de Matemática Educativa, No. 3, 1999, pp. 47-68. [PDF]
  • Radford, L. (1999). El aprendizaje del uso de signos en álgebra. Una perspectiva post-vigotskiana. Educación Matemática, 11 (3), 25-53. [PDF]
  • Radford, L. and Henry, Y. (1999). Les écoles francaises de l’Ontario et les résultats de la troisième enquête internationale sur l’enseignement des mathématiques. Brock Education: A Journal of General Inquiry, 9 (1), 60-71. [PDF]

Haut de la page ↑

1998

  • Radford, L. (1998). On Signs and Representations. A Cultural Account,Scientia Paedagogica Experimentalis, 35 (1), 277-302. [PDF]
  • Radford, L. (1998). On Culture and Mind, a post-Vygotskian Semiotic Perspective,with an Example from Greek Mathematical Thought, paper presented at the 23rd Annual Meeting of the Semiotic Society of America, Victoria College, University of Toronto, October 15-18, 1998. [PDF]
  • Radford, L. (1998, September). The Pleasure of Thinking, Professionally Speaking: The Magazine of the Ontario College of Teachers, 12-14. [PDF]
  • Radford, L. (1998, Septembre). Le plaisir de penser, Pour parler profession : Le magazine de l’ordre des enseignantes et des enseignants de l’Ontario, 8-10. [PDF]

Haut de la page ↑

1997

  • Radford, L. (1997). On Psychology, Historical Epistemology and the Teaching of Mathematics: Towards a Socio-Cultural History of Mathematics, Forthe Learning of Mathematics, 17 (1), 26-33. [PDF]
  • Radford, L. (1997). L’invention d’une idée mathématique: la deuxième inconnue en algèbre, Repères (Revue des instituts de Recherche sur l’enseignement des Mathématiques), juillet 1997, 28, 81-96. [PDF]
  • Radford, L. Netten, J. and Duquette, G. (1997). Developing target second language skills through problem-solving activities in mathematics, NewYork State Association for Bilingual Education Journal (NYSABE), 12, 84-97. [PDF]

Haut de la page ↑

1996

  • Radford, L. (1996). The roles of Geometry and Arithmetic in the Development of Elementary Algebra: Historical Remarks from a Didactic Perspective. In: N. Bednarz, C. Kieran, L. Lee (Ed.), Approaches to Algebra: perspectives for research and teaching, (39-53). Dordrecht, The Netherlands: Kluwer Academic Publishers. [PDF]
  • Radford, L. (1996). Some Reflections on Teaching Algebra Through Generalization, in: Approaches to Algebra: perspectives for research and teaching, N. Bednarz, C. Kieran and L. Lee (eds.), Dordrecht /Boston/ London: Kluwer, 107-111. [PDF]
  • Radford, L. (1996). Lizcano y el problema de la creación matemática, Mathesis, 12, 399-413. [PDF]
  • Radford, L., Grenier, M. (1996). Entre les idées, les choses et les symboles. Une séquence d’enseignement d’introduction à l’algèbre, Revue des sciences de l’éducation, 22, 253-276. [PDF]
  • Radford, L. (1996). La résolution de problèmes: comprendre puis résoudre? Bulletin de l’Association Mathématique du Québec, 36, (3), 19-30. [PDF]
  • Radford, L., Grenier , M. (1996). On the dialectical relationships betweensymbols and algebraic ideas, In: Proceedings of the 20th international conference for the psychology of mathematics education, L. Puig and A. Gutiérrez (eds.), Vol. 4, 179-186, Universidad de Valencia, Spain. [PDF]
  • Radford, L. (1996). History, Research and the Teaching of Mathematics, In: Proceedings of the Quadrennial Meeting of the International Study Groupon the Relations Between History and Pedagogy of Mathematics and Deuxième Université d’été Européenne sur l’Histoireet l’Épstémologie dans l’éducation Mathématique, Universidade do Minho, Braga, Portugal. Vol. I, 271-274. [PDF]
  • Radford, L. and Guérette, G. (1996). Quadratic equations: Re-inventing the formula. A teaching sequence based on the historical development ofalgebra, In: Proceedings of the Quadrennial Meeting of the International Study Group on the Relations Between History and Pedagogy of Mathematics and Deuxième Université d’été Européennesur l’Histoire et l’Épstémologie dans l’éducation Mathématique, Universidade do Minho, Braga, Portugal. Vol. II, 301-308. [PDF]
  • Radford, L. (1996). Sur la résolution de problèmes dans la classe de mathématiques, L’Éducation en Ontario Français, 18, 11-34. [PDF]
  • Radford, L. and Grenier, M. (1996). Entre les idées, les choises et les symboles. Une séquence d’enseignement d’introduction à l’algèbre, Revue des sciences de l’éducation, 22, 253-276. [PDF]
  • Radford, L. (1996). An Historical Incursion into the Hidden Side of the Early Development of Equations, In J. Giménez, R. C. Lins and B. Gómez (eds.), Arithmetics and Algebra Education: Searching for the Future, Computer Engineering Department, Universitat Rovira i Virgili, Catalonia, Spain, 22, 120-131. [PDF]

Haut de la page ↑

1995

  • Radford, L. (1995). L’émergence et le développement conceptuel de l’algèbre [The emergence and conceptual development of algebra]. In E. Lalonde, J. Jaboeuf, & Y. Nouazé (Eds.), Proceedings of the first european summer university « history and epistemology in mathematics education » (pp. 69-83). Montpellier: IREM de Montpellier. [PDF]
  • Radford, L. (1995). Before the other unknowns were invented: didactic inquirieson the methods and problems of medieval Italian algebra. For the Learning of Mathematics, 15 (3): 28-38. [PDF]
  • Radford, L. (1995). Helping Students to Construct and Link Problem-solving Models, Ontario Mathematics Gazette, 34 (2), 15-18. [PDF]
  • Radford, L. (1995). La transformación de una teoría matemática: el caso de los Números Poligonales, Mathesis, 11 (3): 217-250.
  • Radford, L. (1995). Linking Psychology and Epistemology: Can the History of Mathematics Be a Useful Tool for Teaching Mathematics?, In: Proceedings of the Canadian Society for the History and Philosophy of Mathematics, Université de Québec à Montréal, Montréal, Québec. Vol. 8, 328-342. [PDF]

Haut de la page ↑

1994

  • Radford, L. (1994). Moving through systems of mathematical knowledge: from algebra with a single unknown to algebra with two unknowns, Proceedings of the XVIII Conference of the International Group for the Psychology of Mathematics Education, Lisbon, Portugal: University of Lisbon, Vol.4: 73-80.
  • Radford, L. (1994). La enseñanza de la demostración: aspectos teóricos y prácticos, Educación Matemática, 6 (3): 21-36. [PDF]
  • Radford, L. (1994). Les maths, est-ce que ça vous intéresse?, L’Informatheur, 7: 1-3. [PDF]

Haut de la page ↑

1993

  • Radford, L. (1993). L’algèbre comme outil de démonstration, L’Informatheur, 4, 6-7. [PDF]
  • Radford, L. (1993). Le raisonnement algébrique: une réflexion épistémologique. » In Actes du Colloque Elève, École, Société, CIRADE, Université du Québec à Montréal: 33-45. [PDF]

Haut de la page ↑

1992

  • Bednarz, N., Radford, L., Janvier, B. and Lepage A. (1992). Arithmetical and Algebraic Thinking in Problem-Solving, in: W. Geeslin and K. Graham (eds.), Proceedings of the 16th Conference of the International Group for the Psychology of Mathematics Education (PME-16), University of New Hampshire, USA, 1, 65-72. [PDF]
  • Radford, L. (1992). Diophante et l’algèbre pré-symbolique,Bulletinde l’Association des Mathématiques du Québec, 31/32, 73-80. [PDF]
  • Radford, L. (1992). Le raisonnement algébrique dans la résolutionde problèmes écrits: un modèle d’interaction de représentations, Actes du Colloque portant sur l’émergence de l’algèbre, CIRADE, Université du Québec à Montréal: (novembre), 45-64. [PDF]
  • Radford, L. (1992). « Los problemas de mezclas en el primer libro de Matematicas Centroamericano. » Memorias de la VI Reunión Centroamericana y del Caribe sobre Formación de Profesores e Investigacion en Matematica Educativa, Cuernavaca, Mexico. Vol. I, 217-222.
  • Radford, L. (1992). Representaciones y sistemas simbolicos en la resolucion algebraica de problemas, Memorias de la VI Reunión Centroamericana y del Caribe sobre Formacion de Profesores e Investigacion en Matematica Educativa, Cuernavaca, Mexico. Vol. I, 148-153.

Haut de la page ↑

1990

  • Radford, L. (1990). Organización lógica de enunciados en una demostración, Educación Matemática, 2 (1), 21-29. [PDF]
  • Radford, L. (1990). Hacia una Nueva Pedagogía de la Matemática, Humanidades, 7, 23-28. [PDF]
  • Radford, L. (1990). La ecuacion de pitagoras, Ciencia y Educacion, 4 (3), 17-20. [PDF]
  • Radford, L. (1990). Sen 2° y los numeros algebraicos en el sentido de abel, Ciencia y Educacion, 4 (1), 9-12. [PDF]

Haut de la page ↑

1989

  • Radford, L. (1989). Matematica y pedagogia en Guatemala a principios de siglo, Ingenieria, 11 (12), 17-19. [PDF]

Haut de la page ↑

1988

  • Radford, L. (1988). Sobre la nocion de demonstracion : Una experiencia con estudiantes de universidad, Humanidades, 3, 27-30. [PDF]

Haut de la page ↑

1982

  • Radford, L. (1982). Dans le courrier de Fermat, L’Ouvert, 26, 22-25. [PDF]

Haut de la page ↑